Characterization of a second Rhodococcus erythropolis SQ1 3-ketosteroid 9alpha-hydroxylase activity comprising a terminal oxygenase homologue, KshA2, active with oxygenase-reductase component KshB.

نویسندگان

  • R van der Geize
  • G I Hessels
  • M Nienhuis-Kuiper
  • L Dijkhuizen
چکیده

Previously we have characterized 3-ketosteroid 9alpha-hydroxylase (KSH), a key enzyme in microbial steroid degradation in Rhodococcus erythropolis strain SQ1, as a two-component iron-sulfur monooxygenase, comprised of the terminal oxygenase component KshA1 and the oxygenase-reductase component KshB. Deletion of the kshA1 gene resulted in the loss of the ability of mutant strain RG2 to grow on the steroid substrate 4-androstene-3,17-dione (AD). Here we report characteristics of a close KshA1 homologue, KshA2 of strain SQ1, sharing 60% identity at the amino acid level. Expression of the kshA2 gene in mutant strain RG2 restored growth on AD and ADD, indicating that kshA2 also encodes KSH activity. The functional complementation was shown to be dependent on the presence of kshB. Transcriptional analysis showed that expression of kshA2 is induced in parent strain R. erythropolis SQ1 in the presence of AD. However, promoter activity studies, using beta-lactamase of Escherichia coli as a convenient transcription reporter protein for Rhodococcus, revealed that the kshA2 promoter in fact is highly induced in the presence of 9alpha-hydroxy-4-androstene-3,17-dione (9OHAD) or a metabolite thereof. Inactivation of kshA2 in parent strain SQ1 by unmarked gene deletion did not affect growth on 9OHAD, cholesterol, or cholic acid. We speculate that KshA2 plays a role in preventing accumulation of toxic intracellular concentrations of ADD during steroid catabolism. A third kshA homologue was additionally identified in a kshA1 kshA2 double gene deletion mutant strain of R. erythropolis SQ1. The developed degenerate PCR primers for kshA may be useful for isolation of kshA homologues from other (actino) bacteria.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rhodococcus rhodochrous DSM 43269 3-ketosteroid 9alpha-hydroxylase, a two-component iron-sulfur-containing monooxygenase with subtle steroid substrate specificity.

This paper reports the biochemical characterization of a purified and reconstituted two-component 3-ketosteroid 9alpha-hydroxylase (KSH). KSH of Rhodococcus rhodochrous DSM 43269, consisting of a ferredoxin reductase (KshB) and a terminal oxygenase (KshA), was heterologously expressed in Escherichia coli. E. coli cell cultures, expressing both KshA and KshB, converted 4-androstene-3,17-dione (A...

متن کامل

Targeted disruption of the kstD gene encoding a 3-ketosteroid delta(1)-dehydrogenase isoenzyme of Rhodococcus erythropolis strain SQ1.

Microbial phytosterol degradation is accompanied by the formation of steroid pathway intermediates, which are potential precursors in the synthesis of bioactive steroids. Degradation of these steroid intermediates is initiated by Delta(1)-dehydrogenation of the steroid ring structure. Characterization of a 2.9-kb DNA fragment of Rhodococcus erythropolis SQ1 revealed an open reading frame (kstD)...

متن کامل

Molecular and functional characterization of the kstD2 gene of Rhodococcus erythropolis SQ1 encoding a second 3-ketosteroid Delta(1)-dehydrogenase isoenzyme.

Previously, Rhodococcus erythropolis SQ1 kstD, encoding ketosteroid Delta(1)-dehydrogenase (KSTD1) was characterized. Surprisingly, a kstD gene deletion mutant (strain RG1) grew normally on steroids. UV mutagenesis of strain RG1 allowed isolation of strains (e.g. strain RG1-UV29) unable to perform the Delta(1)-dehydrogenation of 4-androstene-3,17-dione (AD) and 9alpha-hydroxy-4-androstene-3,17-...

متن کامل

Deletion of the gene encoding the reductase component of 3-ketosteroid 9α-hydroxylase in Rhodococcus equi USA-18 disrupts sterol catabolism, leading to the accumulation of 3-oxo-23,24-bisnorchola-1,4-dien-22-oic acid and 1,4-androstadiene-3,17-dione

The gene encoding the putative reductase component (KshB) of 3-ketosteroid 9α-hydroxylase was cloned from Rhodococcus equi USA-18, a cholesterol oxidase-producing strain formerly named Arthrobacter simplex USA-18, by PCR according to consensus amino acid motifs of several bacterial KshB subunits. Deletion of the gene in R. equi USA-18 by a PCR-targeted gene disruption method resulted in a mutan...

متن کامل

Purification, crystallization and preliminary X-ray crystallographic analysis of 3-ketosteroid Δ1-dehydrogenase from Rhodococcus erythropolis SQ1.

3-Ketosteroid Δ(1)-dehydrogenase plays a crucial role in the early steps of steroid degradation by introducing a double bond between the C1 and C2 atoms of the A-ring of its 3-ketosteroid substrates. The 3-ketosteroid Δ(1)-dehydrogenase from Rhodococcus erythropolis SQ1, a 56 kDa flavoprotein, was crystallized using the sitting-drop vapour-diffusion method at room temperature. The crystals grew...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 74 23  شماره 

صفحات  -

تاریخ انتشار 2008